Perancangan Awal Sistem Automatic Self-Checkout Untuk Produk Buah Berbasis CNN dan Sensor Berat Loadcell

  • Levin Halim Universitas Katolik Parahyangan
  • Wafi Faisal Falah Universitas Katolik Parahyangan
  • Nico Saputro Universitas Katolik Parahyangan

Abstract

The check-out system is one of the most important systems when we make purchases at a shopping center, shops, supermarkets, or mini markets. Determining different types of fruit is one of the problems faced in making payments, especially in supermarkets, because cashiers must determine the category labeling and weight of a particular fruit to determine the price. In this research, a design is proposed which utilizes Deep Learning in the field of image processing using the Convolutional Neural Network (CNN) algorithm utilizing RaspberryPi3. In making a classification system that uses deep learning, there are several main process stages, such as dataset collection, system design, training, and testing to see the results of the designed CNN model. The processed dataset in this research is a fruit image dataset derived from the Fruits-360. The results of the learning process obtained CNN models with 100% accuracy and loss of ≤ 0.026. The results of the CNN model that has been carried out will be combined with the load cell sensor which is expected to be used as an automatic self-checkout, especially for fruits. On the other hand, the calibration process of the loadcell weight measurement sensor is conducted which resulting an error measurement rate of 0.2 grams.

Keywords: Convolutional Neural Network, Image Processing, Loadcell, RaspberryPi3

Downloads

Download data is not yet available.

References

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186

Arrofiqoh, E. N., & Harintaka, H. (2018). Implementasi metode convolutional neural network untuk klasifikasi tanaman pada citra resolusi tinggi. GEOMATIKA, 24(2), 61. https://doi.org/10.24895/jig.2018.24-2.810

A. Rigner, “Ai-based machine vision for retail self-checkout system,” Master’s Theses in Mathematical Sciences, 2019.

Bai, C., Huang, L., Pan, X., Zheng, J., & Chen, S. (2018). Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing, 303, 60–67. https://doi.org/https://doi.org/10.1016/j.neucom.2018.04.034

Dermawan, T., Sukarsono & Handayani, E.P. (2018). Analisa Load Cell Sebagai Sensor untuk Penimbang Bahan. Pertemuan dan Presentasi Ilmiah Penelitian Dasar Ilmu Pengetahuan dan Teknologi Nuklir, 129–132.

Dharmika, A.P. (2013). Rancang Bangun Load Cell (Sensor Gaya) Berkapasitas 10 kN untuk Uji Tekan Material [Skripsi]. Universitas Islam Negeri Syarif Hidayatullah.

F. Femling, A. Olsson, and F. Alonso-Fernandez, “Fruit and vegetable identification using machine learning for retail applications,” in 2018 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE, 2018, pp. 9–15.

Fruits 360 | Kaggle. (n.d.). Retrieved December 13, 2022, from https://www.kaggle.com/datasets/moltean/fruits

Guo, T., Dong, J., Li, H., & Gao, Y. (2017). Simple convolutional neural network on image classification. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), 721–724. https://doi.org/10.1109/ICBDA.2017.8078730

Pratt, W. K. (2001). Digital image processing : PIKS inside. Wiley.

Kim, H., Hong, H., Ryu, G., & Kim, D. (2021). A study on the automated payment system for artificial intelligence-based product recognition in the age of contactless services. International Journal of Advanced Culture Technology (IJACT), 9(2), 100-105.

Staff, E. (2016). Load Cell Working Principle. https://instrumentationtools.com/load-cell-working-principle/

Suartika E. P, I Wayan, Wijaya Arya Yudhi, S. R. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1), 76. http://repository.its.ac.id/48842/

Sumanto, D. (2012). Presisi dan Akurasi Hasil Penelitian Kuantitatif Berdasarkan Pengambilan Sampel Secara Acak. Jurnal Litbang Universitas Muhammadiyah Semarang, 45–53. http://Jurnal.unimus.ac.id

Yanuar, A. (2018). Fully-Connected Layer CNN dan Implementasinya. Universitas Gadjah Mada Menara Ilmu Machine Learning. https://machinelearning.mipa.ugm.ac.id/2018/06/25/fully-connected-layer-cnn-dan-implementasinya/

Zhang, Z., & Sabuncu, M. R. (2018). Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. 32nd Conference on Neural Information Processing Systems.

Published
2023-06-27
How to Cite
Halim, L., Falah, W. F., & Saputro, N. (2023). Perancangan Awal Sistem Automatic Self-Checkout Untuk Produk Buah Berbasis CNN dan Sensor Berat Loadcell. Jurnal Teknik, 21(1), 1-16. https://doi.org/10.37031/jt.v21i1.255
Abstract Views : 447 | DOWNLOAD PDF Views : 798