Deformasi Bendungan Cirata berdasarkan Analisis Data Instrumen Patok Geser

  • Dian Arief Pramudya Pratomo Universitas Diponegoro
  • Suharyanto Universitas Diponegoro
  • Pranoto Samto Atmojo Politeknik Pekerjaan Umum Semarang


Concrete-faced rockfill dam (CFRD) has a similar weakness to other types of dams, namely deformation. Surface movement monuments can be used to monitor the deformation that occurs on the surface of the dam. Analysis of the monument's measurement data can show settlement and displacement trends that are closely related to the deformation of the dam itself. In this research, the monuments measurement data are compared to acceptance criteria from ICOLD, Sowers, Clements, Fell, and the Ministry of Public Works and Housing as outlined in the Guidelines for The Design and Construction of Concrete Membrane Stone Backfill Dams. This study aims to analyze data from surface movement monuments to determine the settlement and displacement of the dam based on the criteria of deformation. According to the obtained result, the first segment of surface monuments settlement values ranged from 0.028 to 0.165%, which meet the majority of the criteria. In addition, displacement values at the first segment of surface movement monuments were within 0.022 – 0.071%, which meets the ICOLD and Clements criteria. Meanwhile, for the second to fourth segments of surface movement monuments, settlement values of 0.007 – 0.102% were obtained, which still conform to the ICOLD and Fell criteria.

Keywords: CFRD, Settlement, Displacement, Instrument, Surface movement monument


Download data is not yet available.

Author Biographies

Suharyanto, Universitas Diponegoro

Dosen Departemen Teknik Sipil Universitas Diponegoro

Pranoto Samto Atmojo, Politeknik Pekerjaan Umum Semarang

Dosen Politeknik Pekerjaan Umum Semarang


Abedian, M. A., Farrokhi, F., & Rasouli, R. (2018). Settlement Evaluation of a Concrete Face Rock-Fill Dam (CFRD) Using a Back-Analysis Method Based on Measurement Results (A Case Study of Siah-Bisheh Dam). J.Eng.Technol.Sci, 50(4), 516–533.

Acosta, L. E., de Lacy, M. C., Ramos, M. I., Cano, J. P., Herrera, A. M., Avilés, M., & Gil, A. J. (2018). Displacements study of an earth fill dam based on high precision geodetic monitoring and numerical modeling. Sensors (Switzerland), 18(5).

Ave, N. P. (2011). United States Department of the Interior Bureau of Reclamation, 2279, 904.

Central Board of Irrigation and Power. (1992). Rockfill Dams - Finite Element Analysis to Determine Stresses and Deformation in Membrane Type Rockfill Dam. New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.

Clements, R. . (1984). Post-Construction Deformation of Rockfill Dams. Journal of Geotechnical Engineering, 110(7), 821–840.

De Lacy, M. C., Ramos, M. I., Gil, A. J., Franco, Ó. D., Herrera, A. M., Avilés, M., … Chica, J. C. (2017). Monitoring of vertical deformations by means high-precision geodetic levelling. Test case: The Arenoso dam (South of Spain). Journal of Applied Geodesy, 11(1), 31–41.

Fell, R., MacGregor, P., Stapledon, D., & Bell, G. (2015). Geotechnical Engineering of Dams 2nd Edition. Geotechnical Engineering of Dams.

Ghaemi, A., & Konrad, J. M. (2020). A semi-empirical relationship for predicting earthquake-induced crest settlement of concrete faced rockfill dams. Soil Dynamics and Earthquake Engineering, 132(October 2019), 105990.

ICOLD. (1993). Rock Material for Rockfill Dams: Review and Recommendations. ICOLD Bulletin, 92.

Kementerian Pekerjaan Umum dan Perumahan Rakyat. (2011). Pedoman Desain dan Konstruksi Bendungan Urugan Batu Membran Beton. Jakarta.

Kim, M. K., Lee, S. H., Choo, Y. W., & Kim, D. S. (2011). Seismic behaviors of earth-core and concrete-faced rock-fill dams by dynamic centrifuge tests. Soil Dynamics and Earthquake Engineering, 31(11), 1579–1593.

Kim, Y., Seo, M., Lee, C., & Kang, G. (2014). Deformation characteristics during construction and after impoundment of the CFRD-type Daegok Dam, Korea. Engineering Geology, 178, 1–14.

PT. Indra Karya (Persero) Divisi Engineering-I. (2020). Laporan Utama Inspeksi Besar Bendungan PLTA Cirata. Malang.

Pusat Data dan Teknologi Informasi Kementerian PUPR. (2020). Informasi Statistik Infrastruktur.

Pusat Pendidikan dan Pelatihan Sumber Daya Air dan Konstruksi BPSDM Kementerian PUPR. (2017). Modul Instrumentasi Bendungan Urugan Pelatihan Perencanaan Bendungan Tingkat Dasar. Bandung.

Radhi, S. (2007). Menyimak Bendungan di Indonesia (1910-2006). Tangerang Selatan: Bentara Adhi Cipta Indocamp.

Ravindra, G. H. R., Sigtryggsdottir, F. G., & Lia, L. (2021). Buckling analogy for 2D deformation of placed ripraps exposed to overtopping. Journal of Hydraulic Research, 59(1), 109–119.

Sowers, G. F., Williams, R. C., & Wallace, T. (1965). Compressibility of Broken Rock and The Settlement of Rockfills. In Proceedings of The 6th International Conference on Soil Mechanics and Foundation Engineering (pp. 561–565). Montreal: University of Toronto Press.

Suparji, Muklison, & Firdaus, M. (2019). Bendungan Tipe UBMB sebagai Alternatif Teknologi dalam Tantangan Pembangunan Bendungan Besar di Indonesia, 1–12.

U.S. Department of the interior Bureau of Reclamation. (2012). Embankment Dams. Chapter 11: Instrumentation and Monitoring. Design Standards No. 13: Embankment Dams, 4(13).

Zhong, Q. ming, Chen, S. shui, & Deng, Z. (2018). A simplified physically-based breach model for a high concrete-faced rockfill dam: A case study. Water Science and Engineering, 11(1), 46–52.

Zhou, J., Shi, B., Liu, G., & Ju, S. (2021). Accuracy analysis of dam deformation monitoring and correction of refraction with robotic total station. PLoS ONE, 16(5 May), 1–20.

How to Cite
Pratomo, D. A. P., Suharyanto, & Atmojo, P. S. (2021). Deformasi Bendungan Cirata berdasarkan Analisis Data Instrumen Patok Geser. Jurnal Teknik, 19(2), 96-106.
Abstract Views : 152 | Download PDF Views : 228