Pengembangan Chatbot AI untuk Layanan Pelanggan PLN Menggunakan Algoritma Long Short Term Memory (LSTM)
Abstract
Digital transformation requires customer service to be fast, responsive, and continuously accessible. To address this demand, this study presents the development of an AI-based chatbot employing the Long Short-Term Memory (LSTM) algorithm to enhance customer support for PLN. LSTM was chosen due to its effectiveness in capturing conversational context and understanding natural language patterns. The development process includes data preprocessing, model training, and performance evaluation using metrics such as accuracy, precision, recall, and F1-score. Experimental results on 133 test samples demonstrate an accuracy of 82.71%, with an average precision of 82%, recall of 77%, and F1-score of 77%, indicating reliable model performance. The chatbot is designed to handle common customer inquiries, including billing information, service disruptions, and other general services. This innovation is expected to improve PLN’s operational efficiency while delivering faster, more personalized, and dependable customer service, aligning with the demands of the digital era.
Downloads
References
Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427–445. https://doi.org/10.1007/s12525-020-00414-7
Affandes, M., & Pizaini, P. (2022). Academic Information Service Chatbot Using HMM and AIML. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, 8(2), 79. https://doi.org/10.24014/coreit.v8i2.19638
Alrasheedi, F., Zhong, X., & Huang, P.-C. (2023). Padding Module: Learning the Padding in Deep Neural Networks. http://arxiv.org/abs/2301.04608
Anbiyani, H., Muhyidin, F., & Venica, L. (2023). Jurnal Informatika dan Rekayasa Perangkat Lunak Pengembangan Chatbot untuk Meningkatkan Pengetahuan dan Kesadaran Keamanan Siber Menggunakan Long Short-Term Memory. 5(2), 152–161.
Anki, P., Bustamam, A., Al-Ash, H. S., & Sarwinda, D. (2021). Intelligent Chatbot Adapted from Question and Answer System Using RNN-LSTM Model. Journal of Physics: Conference Series, 1844(1). https://doi.org/10.1088/1742-6596/1844/1/012001
Attigeri, G., Agrawal, A., & Kolekar, S. V. (2024). Advanced NLP Models for Technical University Information Chatbots: Development and Comparative Analysis. IEEE Access, 12, 29633–29647. https://doi.org/10.1109/ACCESS.2024.3368382
Caldarini, G., Jaf, S., & McGarry, K. (2022). A Literature Survey of Recent Advances in Chatbots. Information (Switzerland), 13(1). https://doi.org/10.3390/info13010041
Ghosh, S., Ness, S., & Salunkhe, S. (2024). The Role of AI Enabled Chatbots in Omnichannel Customer Service. Journal of Engineering Research and Reports, 26(6), 327–345. https://doi.org/10.9734/jerr/2024/v26i61184
HaCohen-Kerner, Y., Miller, D., & Yigal, Y. (2020). The influence of preprocessing on text classification using a bag-of-words representation. PLoS ONE, 15(5). https://doi.org/10.1371/journal.pone.0232525
Hilmi, M. (2024). ASSESSING THE EFFECT OF CHATBOTS ON MANAGING BRAND REPUTATION AMONG COMMERCIAL BANKS IN MALAYSIA. International Cognitive Journal, 1(1), 14–25. https://doi.org/10.69659/gacv3b41
Hsueh, Y. L., & Chou, T. L. (2022). A Task-oriented Chatbot Based on LSTM and Reinforcement Learning. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(1). https://doi.org/10.1145/3529649
Inupakutika, D., Nadim, M., Gunnam, G. R., Kaghyan, S., Akopian, D., Antonio, S., Chalela, P., & Ramirez, A. G. (2021). Integration of NLP and Speech-to-text applications with Chatbot. IS and T International Symposium on Electronic Imaging Science and Technology, 2021(3). https://doi.org/10.2352/ISSN.2470-1173.2021.3.MOBMU-035
Isa, N. A. N. M., Jawaddi, S. N. A., & Ismail, A. (2024). Experimental Evaluation of Machine Learning Models for Goal-oriented Customer Service Chatbot with Pipeline Architecture. http://arxiv.org/abs/2409.18568
Mubarok, M. I., & Abdi, M. (2024). IMPLEMENTASI NATURAL LANGUAGE PROCESSING DALAM PERANCANGAN APLIKASI CHATBOT PADA FIKTI UMSU. Dalam Jurnal Mahasiswa Teknik Informatika (Vol. 8, Nomor 6).
Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199–3226. https://doi.org/10.1108/IJCHM-04-2020-0259
Rocha, Á., Ferrás, C., Carlos López-López, P., & Guarda, T. (2021). Advances in Intelligent Systems and Computing 1330 (Vol. 1). http://www.springer.com/series/11156
Schmidt, C. W., Reddy, V., Zhang, H., Alameddine, A., Uzan, O., Pinter, Y., & Tanner, C. (2024). Tokenization Is More Than Compression. http://arxiv.org/abs/2402.18376
Srivastava, G., Agarwal, S., & Deepak Vishwakarma, M. (2020). DEEP NEURAL NETWORK BASED CHATBOT. International Research Journal of Engineering and Technology. www.irjet.net
Copyright (c) 2025 Afandi Afandi, Wakhid Rokhayadi, Edi Susanto (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.