Studi Eksperimental Sistem Pengarah Aliran Pada Turbin Hidrokinetik Archimedes Spiral
Abstract
Changes in flow direction due to drag and lift forces that hit the Archimedes Spiral hydrokinetic turbine is a problem that could affect turbine performance, hence, it is important to add a flow steering system. This study aims to determine the effect of adding a flow guide system in the form of a truncated cone and tail guide on the performance of the Archimedes Spiral turbine. The method used is experimental tests on turbine performance using several variations of flow velocity in open channels. The results of the study show that the Archimedes Spiral turbine with a flow guide system produces a Cp value of 0.19–0.22 and a TSR value of 1.76–1.85. The torque value obtained is in the range of 0.013–0.017 Nm within the range of 28.64–33.60 RPM. The addition of a truncated cone was able to increase the flow capture force. The addition of a guide tail could forward the vortex flow lengthwise to the downstream of the turbine. The forwarded vortex flow inhibits the rotation of the turbine blades and causes the compressive force on the turbine to increase. The increased compression force on the blade caused the torque value to increase. In the Archimedes Spiral turbine with the addition of a flow steering system, the increased torque caused the concept drag force to be higher than the concept of lift force. The addition of a truncated cone and guide tail increased the performance of the Archimedes Spiral turbine.
Downloads
References
Abbasi, A., Ghassemi, H., & Molyneux, D. (2018). Numerical Analysis of the Hydrodynamic Performance of HATST with Different Blade Geometries. American Journal of Civil Engineering and Architecture, 6(November), 1–5.
Antomo, T., Kamiana, I. M., & Nindito, D. A. (2020). Analisis Pengembangan Hidrokinetik Turbin Gorlov Akibat Penambahan Luas Bidang Tangkap. Teknika: Jurnal Sains Dan Teknologi, 16(2), 159.
Cao, H. (2011). Aerodynamics Analysis of Small Horizontal Axis Wind Turbine Blades by Using 2D and 3D CFD Modelling (May 2011, p. 82).
Ebrahimi, S., & Ghassemi, M. A. (2018). Numerical Aerodynamics Analysis of the Archimedes Screw Wind Turbine. International Journal of Multidisciplinary Sciences and Engineering, 9(10), 12–15.
Jang, H., Kim, D., Hwang, Y., Paek, I., Kim, S., & Baek, J. (2019). Analysis of Archimedes Spiral Wind Turbine Performance By Simulation and Field Test. Energies, 12(24).
Ji, H. S., Baek, J. H., Mieremet, R., & Kim, K. C. (2016a). The Aerodynamic Performance Study on Small Wind Turbine with 500W Class through Wind Tunnel Experiments. International Journal of Renewable Energy Sources, 1, 7–12.
Ji, H. S., Qiang, L., Beak, J. H., Mieremet, R., & Kim, K. C. (2016b). Effect of the Wind Direction on the Near Wake Structures of an Archimedes Spiral Wind Turbine Blade. Journal of Visualization, 19(4), 653–665.
Khan, M. J., Bhuyan, G., Iqbal, M. T., & Quaicoe, J. E. (2009). Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review. Applied Energy, 86(10), 1823–1835.
Kholiq, I. (2015). Pemanfaatan Energi Alternatif Sebagai Energi Terbarukan Untuk Mendukung Subtitusi BBM. Jurnal IPTEK, 19(2), 75–91.
Kim, K. C., Kim, Y. K., Ji, H. S., Beak, J. H., & Mieremet, R. (2013). Aerodynamic Characteristics of Horizontal Axis Wind Turbine with Archimedes Spiral Blade. Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, 1–6.
Mieremet, R. (2014). The Aerodynamic Method of the Archimedes Windturbine. POWER Solutions, 1–9.
Nindito, D. A., Istiarto, & Kironoto, B. A. (2008). Simulasi Numeris Tiga Dimensi Kantong Lumpur Bendung Sapon. Journal of the Civil Engineering Forum, 18(1), 712–724.
Octauria, E. P., Nindito, D. A., & Saputra, R. H. (2021). Uji Eksperimental Pengaruh Sudut Omni Directional Guide Vanes Terhadap Performa Turbin Hidrokinetik Darrieus. EKSERGI Jurnal Teknik Energi, 17(2), 95–108. http://dx.doi.org/10.32497/eksergi.v17i2.2581
Patil, Y. (2018). Design, Fabrication and Analysis of Fibonacci Spiral Horizontal Axis Wind Turbine. International Journal of Aerospace and Mechanical Engineering, 5(2), 19–22.
Rakesh, B., Rao, S. S., Kiran, C. Y. V, Anand, M., & Duryodhana, D. (2019). Design , Fabrication and Experimental Analysis of Archimedes Spiral Wind Turbine. International Journal of Innovative Research InTechnology (IJIRT), 5(11), 304–310.
Rao, S., Shanmukesh, K., Naidu, M. K., & Praveen Kalla. (2018). Design and Analysis of Archimedes Aero-Foil Wind Turbine Blade for Light and Moderate Wind Speeds. International Journal on Recent Technologies in Mechanical and Electrical Engineering (IJRMEE), 5(8), 1–5.
Rat, C. L., Prostean, O., & Filip, I. (2018). Hardware-in-the-Loop Emulator for a Hydrokinetic Turbine. IOP Conference Series: Materials Science and Engineering, 294(1), 11.
Rat, C. L., Prostean, O., Filip, I., & Vasar, C. (2018). The Modeling and Simulation of an Archimedes Spiral Turbine for use in a Hydrokinetic Energy Conversion System. 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), 245–248.
Shivanegara, S. D., Vernekar, K. K., Rathod, K., Ravikumar, C., & Y, D. R. P. (2017). Design, Fabrication and Aerodynamic Analysis of a Modified Archimedes Wind Turbine. Issue VI, 598(May), 2321–9653.
Verma, D. R., & Katkade, P. S. D. (2018). Horizontal Axis Water Turbine : Generation and Optimization of Green Energy. International Journal of Applied Engineering Research, 13(5), 9–14.
Wardani, C. S., Nindito, D. A., & Jaya, A. R. (2020). Inovasi dan Desain Turbin Hidrokinetik Darrieus Berdasarkan Bentuk Distribusi Kecepatan Aliran. Media Ilmiah Teknik Sipil, 9(1), 32–43.
Yang, S. M., Ji, H. S., Shim, D. S., Baek, J. H., & Park, S. H. (2017). Conical Roll-Twist-Bending Process for Fabrication of Metallic Archimedes Spiral Blade Used in Small Wind Power Generator. International Journal of Precision Engineering and Manufacturing - Green Technology, 4(4), 431–439.
Yudistira, R., Nindito, D. A., & Saputra, R. H. (2021). Kinerja Turbin Hidrokinetik Tornado Savonius. Jurnal Teknika: Jurnal Teoritis Dan Terapan Bidang Keteknikan, 4(2), 181–186. http://dx.doi.org/10.52868/jt.v4i2.2732
Copyright (c) 2021 Dwi Anung Nindito, Adri Pratama, Raden Haryo Saputra (Author)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.